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INTRODUCTION

Seashells waste is considered to be abundant 
in coastal area, especially in the location where 
most of the population works in fisheries (Kur-
niawan and Imron, 2019a; Morris et al., 2019). 
Seashells waste can be converted into useful and 
economically viable products (Imron et al., 2020; 
Kurniawan and Imron, 2019b; Mo et al., 2018). 
The conversion of seashell waste into new min-
erals for sustainable cementitious materials is a 

substitute and additional mineral fillers in cement 
has also been proven to be suitable (Morris et al., 
2019; Wang et al., 2019; Wulandari et al., 2021). 
Besides, seashell waste can also become a sup-
port material for the photocatalytic synthesis pro-
cess (Kurniawan et al., 2020; Wang et al., 2020).

Several studies have found that the dominant 
seashell component is CaCO3 (approx. 96%), 
called calcite, and small amounts of other min-
erals (Yoon et al., 2003). Another research also 
mentions that seashells consist of 98% calcium 
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carbonate, and when calcined above 700ºC, it 
turns into CaO (Sirisomboonchai et al., 2015). 
The benefit of seashells as a raw material in the 
production of CaO is a carrier for heterogeneous 
catalysts that can reduce the biodiesel production 
costs as well as the amount of seashells waste 
(Hadiyanto et al., 2016). Seashells have character-
istics of 98% CaCO3, 0.79% MgCO3, and 0.15% 
SrCO3 (Sirisomboonchai et al., 2015). There is 
also a high Ca content in the seashell waste as 
a source of CO2 absorption (Huang et al., 2018).

According to Kaplan (1998), the seashells 
consist mostly of CaCO3 (95–99% CaCO3), but 
when heated to a specific temperature, it produced 
a single metal oxide CaO. Referring to Kwon et al. 
(2004), seashell waste is an effective reagent that 
can remove phosphorus from wastewater. Cal-
cination temperature and time played important 
role in the characteristics of the produced com-
pounds (Ramasamy et al., 2016). When heated 
to temperatures higher than 750–800°C, the sea-
shells can turn into good calcium oxide (Nordin et 
al., 2015). Through a thermal decomposition pro-
cess known as calcination, the CaCO3 becomes 
CaO used in industry and everyday practices such 
as water and sewage treatment, glass production, 
construction materials, agriculture, and others 
(Lin et al., 2011; Mohamed et al., 2012).

Seashell waste is abundant in Tanjung Baru 
Beach, Karawang, Jawa barat, Indonesia. The uti-
lization of this waste has not been explored yet, 
especially as a calcium carbonate source (CaCO3) 
to produce solid CaO which may be utilized fur-
ther. This study was aimed at utilizing seashell 
waste as the source of calcium carbonate to pro-
duce solid CaO at various temperatures and pe-
riod of calcination as well as to characterize the 
produced compounds. This research was expect-
ed that the obtained CaO will be environmentally 
friendly and can be used in various fields.

MATERIALS AND METHODS

Source and pretreatment of seashells waste

The seashells were taken from Tanjung Baru, 
Karawang, Jawa Barat, Indonesia, about 38 km 
from the University of Singaperbangsa Karawa-
ng. The seashells were sorted into large ones and 
used in the research. The obtained seashells were 
then cleaned by using tap water and dried under 

the sun (Kadir et al., 2020; Wang et al., 2019). 
After drying, the process was repeated by using 
NaOH 10% (Pudak Scientific, Indonesia) and 
Aquadest (Shagufta Laboratory, Indonesia) to re-
move the impurities that still clung to the shells 
(Tang et al., 2011). After the double cleansing, 
seashells were laid under the sun until dry (Ti-
tah et al., 2018a). The cleaned and dried seashells 
were ground to obtain the powder form. The sea-
shells powder were then dried in a DHG 9053A 
oven (Zenithlab, USA) for twenty-four hours at 
105°C (Kaewdaeng et al., 2017). The oven sam-
ples were sieved with a size of 100 mesh to obtain 
homogeneous powder. The homogenous powder 
was then subjected to the calcination process 
(Abutu et al., 2019).

Analysis of the optimum temperature and 
calcination time for CaO production

In the calcination process, total of 20 grams 
of powder were stored in a desiccator to obtain 
stable balance (Almansoory et al., 2020; Purwanti 
et al., 2017). The seashells powder were calcined 
using an electric furnace (Neytech Vulcan, USA) 
with the temperature variation of 800°C with a 
calcination time of 2–4 hours (Kouzu and Hidaka, 
2012), 900°C with a calcination time of 2–4 hours 
(Boey et al., 2011), and 1000°C with a calcination 
time of 2–4 hours (Sirisomboonchai et al., 2015).

Characterization of produced 
compounds after calcination

The characterization and analysis of the sam-
ple were carried out based on the functional group 
analysis using the Fourier Transform Infrared 
Spectroscopy (FT-IR) Model Prestige 21 (Shi-
madzu, Japan) (Ajao et al., 2018). The crystallini-
ty analysis was conducted using X-ray Diffraction 
(XRD) MiniFlex Type (Rigaku, Japan) (2θ range 
of 0–90° at a scanning speed of 1° min-1) (Wang et 
al., 2021). The surface morphology and composi-
tion of compounds were analyzed using Scanning 
Electron Microscopy – Energy Dispersive X-Ray 
Spectroscopy (SEM-EDS) Model JSM-IT300LV 
(Jeol, Japan) (Titah et al., 2019, 2018b). The 
study of mass changes as a function of tempera-
ture or time under controlled conditions was con-
ducted using Thermogravimetric analysis (TGA) 
model TAPT-1600 (Linseis, Germany), with N2 
gas flow conditions at 4 liters/hour, 1 gr sample, 
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room temperature 100–1200°C, temperature fl ow 
10°C min-1 (default) (Saleh et al., 2017).

RESULTS AND DISCUSSION

Characterization using FTIR

On the basis of Figure 1, the IR spectrum of 
seashell powder before and after calcined showed 
diff erent transmittance and functional group. Sev-
eral diff erent peaks appeared after calcination. 
Some peaks did not appear in the uptake of sea-
shell powder before calcination but appeared on 
the spectrum after calcination. Before calcination, 
an absorption band appears at the wave number 
3429.43 cm-1. After calcination, several wave-
numbers around 3400 cm-1 belong to the O-H 
group vibrational absorption bands from Ca(OH)2
due to forming the O-H group attached to the cal-
cium atom (Suryaputra et al., 2013).

In the seashell powder, before calcination, the 
IR spectrum shows the absorption band change 
at the wavenumber of 1475.54 cm-1 and a sharp 
peak appearing. In contrast, the peaks are wid-
ened after calcination. The wavenumber belongs 
to the C-O vibration in the carbonate functional 
group of CaCO3. The absorption band on the shell 
powder after calcination at several time variations 
in general. The absorption pattern was not much 
diff erent, even though there were diff erences in 
the absorption intensity. However, the tempera-
ture variation was suffi  cient to aff ect the IR spec-
trum results, shown by the widening of the spec-
trum peaks by the increasing of the calcination 
temperature (Brites et al., 2018). This indication 
is pointing that CaCO3 has changed into CaO due 
to the heating process.

The CaO was detected at the absorption band 
of 2513.25 cm-1 which is a characteristic of the 
peak of the C-H functional group. The samples 
that have CaO showed the C-H stretching vibra-
tions. It can also be seen that the presence of CaO 
was indicated by the appearance of the absorption 
band at a wavelength of 709.80 cm-1. This absorp-
tion band is a fi ngerprint that indicates the pres-
ence of CaO bonds, as mentioned by Raizada et 
al. (2017). The FTIR results indicated that the cal-
cination time did not aff ect the functional group 
of seashells. On the other hand, the increasing of 
calcination temperature showed an alteration to 
the IR spectrum.

Characterization using XRD

Figure 2 showed the XRD characteriza-
tion patterns of seashells, before and after the 
calcination process. The results displayed the 

Figure 1. FTIR result for compounds 
before and after calcination process at 
(a) 800°C, (b) 900°C, and (c) 1000°C
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calcium contained in the shells is calcium carbon-
ate (CaCO3). These XRD peaks were adjusted to 
the Joint Committee on Power Diff raction Stan-
dards (JCPDS) for CaCO3 and CaO (Nakatani et 
al., 2009). In the CaCO3 phase, the highest peaks 
are at angles of 29.4o, 39.4o, 43.2o, 47.5o, and 

48.5o. Meanwhile, the CaO phase with a minimal 
intensity is at the angle of 58.1o and 64.6o. The ap-
pearance of the CaO phase was obtained because 
several CaCO3 compounds have changed phase 
after the calcination process (Berent et al., 2019). 
The XRD results indicated that the variation of 
temperature and calcination time did not have a 
signifi cant eff ect because the obtained peaks were 
almost the same.

Characterization using SEM-EDX

Figure 3 show the result of surface morphol-
ogy of seashell powder, before and after the calci-
nation process. The most dominant elements were 
C (18.43%), O (52.07%), and Ca (27.86%) for the 
seashells before calcination (Figure 3a). The fea-
tures of C, Na, Al, Si, Fe, and Cu are minimal due 
to the heating process (calcination). In turn, for 
the O and Ca elements in the seashells calcined 
at 800°C, the obtained composition of O was 
56.97% and Ca was 43.03% (Figure 3b). The 
temperature of 900°C gave a similar composi-
tion of O (62.71%) and Ca (37.29%) (Figure 3c) 
and the temperature of 1000°C also showed a 
similar content of O (63.56%) and Ca (36.44%) 
(Figure 3d). Meanwhile, in the research con-
ducted by Suryaputra et al. (2013), the calcined 
seashells at 1000°C had higher diff erent compo-
sition of O (50.14%) and Ca (49.86). The dif-
ferent composition occurred due to the diff erent 
initial materials used for the research (Abutu et 
al., 2019; Wang et al., 2019). In the SEM analy-
sis, the seashells calcined at 800°C, 900°C, and 
1000°C showed a rough surface, and irregular 
shaped particles gathered into bulk with an indi-
vidual diameter of 1 μm.

Characterization using TGA analysis

The TGA analysis results showed a sig-
nifi cant change in mass begins to occur around 
temperatures of 780°C. This mass decrease indi-
cates the decomposition of CaCO3 to CaO due to 
the release of CO2 compounds (Bazargan et al., 
2015). The temperature of 800.5°C and calcina-
tion period of 78 minutes gave the highest mass 
changes for the seashells. After passing the tem-
perature around 900°C, it appears that the mass 
change curve was relatively constant. The curve 
indicates that above temperatures of 900°C to 
1200°C, there is no change in the CaO compound 
(Dümichen et al., 2015).

(c)
Figure 2. XRD result for compounds 
before and after calcination process at 
(a) 800°C, (b) 900°C, and (c) 1000°C
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Figure 3. SEM-EDX result for compounds (a) before calcination and after 
calcination process at (b) 800°C, (c) 900°C, (d) 1000°C
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CONCLUSIONS

FTIR analysis of calcined seashells with 
variations in time (2–4 hours) and tempera-
ture (800–1000°C) produced a similar spectrum 
(2513.25 cm-1) which belongs to the characteristic 
of the peaks of the C-H group containing calcium 
oxide (CaO). The absorption band appearance at 
a wavelength of 709.80 cm-1 was a fi ngerprint in-
dicating the presence of CaO bonds. The FTIR 
spectrum indicated that the calcination time did 
not aff ect the production of CaO. The XRD char-
acterization showed a similar pattern, indicating 
that the calcination time and temperature did not 
aff ect the cementitious component. The SEM-
EDX analysis showed that the higher the calcina-
tion temperature, the lower the calcium content, 
with similar irregular particles. The results of the 
TGA analysis showed that after passing the tem-
peratures of 900°C the mass change curve seemed 
to be relatively constant, with 800.5°C giving the 
highest mass diff erences.
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